
SDDEC24-23
Website | https://sddec24-23.sd.ece.iastate.edu/
Email | sddec24-23@iastate.edu

Wargaming Simulator
Client | Reid Coates and Major Stephanie Jones (on behalf of ISU AFROTC)

Advisor | Ahmed Shakil

Team Members

Reid Coates | Client Coordination and Backend Development

Jack Kelley | Organization and Frontend Development

Alexander Hassan | Testing and Frontend Development

Luke Muilenburg | Frontend Development

Version 2 - Revised 4/27/24

2

Executive Summary
Development Standards & Practices Used

● Layered architectural structure (Practice)

● HTTP communication standards (Practice)

● [5] GameMaker Studio documentation standards (Practice)

● IEEE/ISO/IEC 26514-2021 - Design and Development of Information for Users (Standard)

● IEEE/ISO/IEC 14754-2021 - Software Life Cycle Processes - Maintenance (Standard)

● IEEE/ISO/IEC 41062-2019 - Software Life Cycle Processes - Software Acquisition

(Standard)

Summary of Requirements

● Intuitive user interface

● Web-based application

● Familiarizes user with Agile Combat Employment (ACE) strategy

Applicable Courses from Iowa State University Curriculum

● COM S 309 - Software Development Practices

● COM S 317 - Introduction to Software Testing

● COM S 319 - Construction of User Interfaces

● COM S 339 - Software Architecture and Design

● COM S 363 - Introduction to Database Management Systems

New Skills / Knowledge Acquired From Project

● GameMaker Studio (Game Maker Language)

● Configuring remote access to Raspberry Pi

3

Figures, Tables, and Definitions
Figures Page

Figure 1 - Empathy Map for AFROTC Cadets 8

Figure 2 - Task Decomposition Flowchart 13

Figure 3 - Spring and Fall 2024 Milestone Gantt Charts 19

Figure 4 - Gameboard Design Lotus Blossom 31

Figure 5 - Wargaming Simulator Architectural Layer Diagram 32

Figure 6 - Game Logic Flowchart 33

Figure 7 - Frontend Architectural Layers 34

Figure 8 - Backend Layers Diagram 35

Tables Page

Table 1 - Estimated Personnel Hours 22

Table 2 - Broader Context Analysis 25

Table 3 - Areas of Responsibility 43

Definitions

ACE - Agile Combat Employment (war strategy)

AFROTC - Air Force Reserve Officer Training Corps

GameMaker Studio - Video game development platform

GML - Game Maker Language (propriety GameMaker Studio programming language)

Wargaming - Action of playing a war game; Action of engaging in a campaign using military

strategy

4

1. Introduction 6
1.1. Problem Statement 6
1.2. Intended Users 6
2. Requirements, Constraints, and Standards 9
2.1. Requirements and Constraints 9
2.1.1. Functional Requirements 9
2.1.2. Resource / Physical Requirements 9
2.1.3. Aesthetic / UX / UI Requirements 10
2.2. Engineering Standards 10
2.2.1. Code Conventions for the Java Programming Language 10
2.2.2. Rule Book 10
2.2.3. Lack of Relevant Standards 11
3. Project Plan 12
3.1. Project Management / Tracking Procedures 12
3.2. Task Decomposition 12
3.3. Project Proposed Milestones, Metrics, and Evaluation Criteria 14
3.3.1. Evaluation Criteria and Metrics 14
3.3.2. Project Milestones and Subtasks 14
3.4. Project Timeline / Schedule 19
3.5. Risks and Risk Management / Mitigation 20
3.6. Personnel Effort Requirements 22
3.7. Other Resource Requirements 24
4. Design 25
4.1. Design Context 25
4.1.1. Broader Context 25
4.1.2. Prior Work / Solutions 26
4.1.3. Technical Complexity 26
4.2. Design Exploration 28
4.2.1. Design Decisions 28
4.2.2. Ideation 30
4.2.3. Decision-Making and Trade-Off 31
4.3. Proposed Design 32
4.3.1. Overview 32
4.3.2. Detailed Design and Visuals 33
4.3.3. Functionality 35
4.3.4. Areas of Concern and Development 36
4.4. Technology Considerations 36

5

4.5. Design Analysis 37
5. Testing 39
5.1. Unit Testing 39
5.2. Interface Testing 39
5.3. Integration Testing 40
5.4. System Testing 40
5.5. Regression Testing 40
5.6. Acceptance Testing 40
5.7. Results 41
6. Implementation 42
7. Professional Responsibility 43
7.1. Areas of Responsibility 43
7.2. Project Specific Professional Responsibility Areas 44
7.3. Most Applicable Professional Responsibility Area 46
8. Closing Material 47
8.1. Discussion 47
8.2. Conclusion 47
8.3. References 47
9. Team 49
9.1. Team Members 49
9.2. Required Skills for the Project 49
9.3. Skills Covered by the Team 49
9.4. Project Management Style Adopted by the Team 50
9.5. Initial Project Management Roles 50
9.6. Team Contract 50

6

1. Introduction

1.1. Problem Statement

Wargaming is an important part of the ISU AFROTC curriculum. Its purpose is twofold: to

teach cadets to understand how the Air Force employs warfighting assets and to teach the

concept of Agile Combat Employment (ACE). ACE is a proactive and reactive operational

scheme of maneuver executed within threat timelines to increase survivability while generating

combat power. Currently, these principles are taught practically through the use of a board game

system called Global War 2030. This is where our task comes in.

Since the wargame is currently only represented physically it is difficult to scale to many

users with different schedules and geographic locations. Our goal is to solve this access and

scalability bottleneck by translating the existing board game into a web-hosted format. This

would allow us to reach a broader user base and deploy the software to more AFROTC groups

than solely ISU AFROTC. This would allow more cadets to practice ACE through a more

hands-on wargaming environment. By solving this format bottleneck, our goal is to increase the

amount of practical wargaming experience available to AFROTC cadets and facilitate

collaborative training through a 2 player multiplayer system.

1.2. Intended Users

The product we create will be used by all detachments of the Air Force ROTC at Iowa

State University. This product is intended to be used by both Cadre/instructors and Cadets at all

levels in AFROTC. All AFROTC cadets will benefit from the results of the project because every

cadet will be able to access the current wargaming sessions they are involved in remotely via

the internet and will not be forced to update a physical game board. There are multiple groups

of specific users who are relevant to our project, but there are three primary groups.

First, we have AFROTC Cadets in leadership positions. This group of cadets is generally

very stressed as they need methods to teach, as well as learn, Wargaming to and from their

subordinate cadets. Leader cadets are full-time students, as well as in a high-ranking student

leadership position within the Air Force ROTC at Iowa State University. Cadet leaders of a

detachment need to familiarize cadets with the Agile Combat Employment strategy. With their

7

full schedule, the leaders do not have time to spend hours learning and explaining the

complex rules for the various strategy games that currently exist and need a user-friendly

application that can guide cadets through the rules and help them focus on learning strategy.

Our game will provide direction for the legal moves and decisions that can be made to reduce

the amount of time Cadet leaders need to spend teaching the technicalities of the game, and

focus on the overall learning outcome of familiarization with the ACE Strategy.

Next, we have Cadets not in leadership positions. These students are very overwhelmed

with adapting to the responsibilities of Cadet life and managing their schedules. Time is very

valuable, and so is the ability to quickly and easily learn the new material being thrown at them

on a weekly basis. With these needs, it is important that whatever system is used to teach the

ACE Strategy is user-friendly (easy to pick up) and provides proper tools and calculation

functionality to easily play through the turns (quick). Our virtual adaptation of the board game

currently used for instruction Cadets on the ACE Strategy will provide resources to make the

game run more quickly, as well as guide Cadets through the possible moves and decisions they

can make to reduce the amount of time it takes to learn to play the game. At the end of this

document, you can find the empath map for our Cadets not in leadership positions.

Finally, we have the Instructors / Cadre. This group of users is also very busy, and they

are required by profession to teach AFROTC cadets how to employ Air Force assets, as well as

Agile Combat Employment. The instructors need to be able to consistently and efficiently teach

these objectives, and the current methods of doing so are both physical and overly complicated,

thus leading to a degradation of the teaching of ACE. They will benefit from the Wargaming

simulator because each instructor will be able to teach ACE without having to create and

employ a physical alternative to Wargaming, and instructors will be able to use our simulator

with only a simple internet connection.

8

9

2. Requirements, Constraints, and Standards

2.1. Requirements and Constraints

2.1.1. Functional Requirements

A primary functional requirement of our project is deployability. The frontend will be

developed using GameMaker Studio which has support for various hosting and deployment

options, including a web-based application which we intend to use. This will add support for

multiple types of devices (desktops, laptops, tablets, etc.) on the frontend to add flexibility for

our users. The backend will be developed as a Java Spring Boot application and initially

deployed to an ISU managed virtual machine. To meet our deployability requirement, we will

produce documentation outline the steps for deploying the Java artifact on an Ubuntu Linux

distribution. This will give our client the information necessary to change the deployment

location to a more suitable host if needed in the future.

Another key functional requirement of our project is extensibility. Privileged users should

easily be able to add or modify game assets after development. This includes visuals, resource

attributes, and other non-functional modifications. For example, some resource attributes that

will be included in the game are movement speed and stealth. For an F-16 fighter jet asset, a

privileged user should be able to add the stealth attribute if desired. However, a new attribute

like invincibility would require new functionality to be added to the code, and won’t be supported

by our project (constraint).

2.1.2. Resource / Physical Requirements

In regards to resource and physical requirements, the system shall be deployable as a

Java Spring Boot application. There must be documentation outlining the deployment of the

Java artifact on a 2024 or later Ubuntu Linux distribution, which is where the initial backend

Spring Boot system is hosted.

The system must have a modular backend in which CSV or SQL (SQL 4 standard)

databases can be exchanged with no development time except the generation of the query

statements and Java methods to execute the statements (constraint). This requirement is

created in an effort to allow the backend system to be adapted by other teams in the future,

possibly other ROTC Detachments. The system must store data on a server that can be queried

10

by up to 2 users to facilitate a game between 2 players who are not on the same network

and not actively connected to each other (constraint).

2.1.3. Aesthetic / UX / UI Requirements

Usability is a key requirement for our Wargaming Simulator. The system shall teach

users from any college degree background to independently operate software, in order to learn

the concepts of wargaming (Objective 10.1-3 AFROTCI 36-2011 Vol 1) to the proficiency level

outlined by HQ AFROTC. Understanding the workload of our user base (AFROTC Cadets) and the

time frame in which the game is to be played (over the course of a semester), it is important that

the interfaces of our game are intuitive and guide the user in not only quickly playing their turn,

but also explaining the rules through gameplay. The board game predecessor to our project has

a heavy learning curve, and part of the objective of our digital recreation is to lessen that

learning curve.

The system shall support the creation of multiple game sessions, each between 2

different users, and store multiple games per account for a time period of no less than six

months (constraint). The application shall be accessible from a web browser opened on a

computer on a standard 16:9 display at a minimum (constraint). The game shall be playable

with a mouse and keyboard as I/O devices (constraint).

2.2. Engineering Standards

2.2.1. Code Conventions for the Java Programming Language

Our backend application will be a Java Spring Boot Application; thus, good practices and

coding conventions shall be followed whenever applicable. We want this software to be

maintainable by someone other than the authors if need be. Additionally, 80% of the lifetime

cost of a software application is due to maintenance, so we shall follow the Code Conventions

for the Java Programming Language via Oracle in order to make our systems maintainable and

scalable.

2.2.2. Rule Book

Since our game will be a child of a physical board game, there is an existing rulebook for

said board game. While this is not an official engineering standard by any means, it does serve

11

as a set of guidelines to help us not only shape our UI, but also the mechanics and logic of

our system.

2.2.3. Lack of Relevant Standards

Outside of the conventions for Java, our team was unable to find many relevant

standards for our project. Taking away the educational nature of our project, it is simply a video

game. Gaming is an industry that doesn’t have many official development standards. This is

because it is an industry with so many vastly different products, so the requirements and

necessary standards are unique from project to project. With this, we plan to develop our own

data structure, procedural, and naming standards before getting into development of the core

project.

A relevant aspect of the development of our project is that our client is the AFROTC,

which is an organization that has many of their own protocols and standards that need to be

followed. With that in mind, there are not any technical standards that would dictate constraints

or procedures for us to follow in the development of our project. The standard delivered to us

(Objective 10.1-3 AFROTCI 36-2011 Vol 1) only states the learning outcome of the project. That

is, the game should help familiarize Cadets with the ACE strategy. Outside of that requirement,

our team has been given near free reign to go whatever direction we think will best accomplish

that learning outcome, while also remaining true to the original board game.

12

3. Project Plan

3.1. Project Management / Tracking Procedures

Our team is adopting a blend of waterfall and agile development. This includes Weekly

SCRUM Sprints, Monday team meetings, Thursday check-in/advisor meetings, and Flowchart

tasks with color codes for sprints. This is because our project requirements are largely not fixed,

and thus, our team must be able to adapt to ever-changing requirements. We have planned

multiple sprints out from week one, so we did not adopt a pure agile management style, but we

still have standups and client-involvement, thus, a blend of management styles was achieved.

Our Team tracks progress via GitLab and Sprint plans provided in section 3.2.

3.2. Task Decomposition

Since our project requires a robust front and back-end codebase, task decomposition is

very important to us to ensure that developers working on both sides of the problem are able to

successfully integrate code during merges. The agile approach we are making use of helps us in

this regard. The next page contains our task decomposition chart (Figure 2), which is broken up

by design sprint.

13

14

3.3. Project Proposed Milestones, Metrics, and Evaluation Criteria

3.3.1. Evaluation Criteria and Metrics

Progress for our project will be determined by accomplishing a task outlined in a project

milestone. As we are developing a game, we have split up the tasks into reasonable chunks that

flow into each other effectively for development. Many of the milestones are feature

implementations as opposed to something that can be quantified.

Our first metric values will come when we reach our user testing period mid-Fall. These

values will be qualitative, dictated by the experience conveyed to us by a group of AFROTC

cadets who will be using our simulator. We intend to develop an experience form to receive

feedback on the user experience, ease of learning the game rules, and a place for comments

and additional feedback as to how we can better suit our game to fulfill the task of effectively

familiarizing cadets with the ACE strategy.

The project milestone and respective subtasks are listed below, along with a brief

description of each subtask. A Gantt chart with all milestones and tasks can be found below the

list, outlining the overall timeline for the milestone, as well as the timeline for each task within

the milestone.

3.3.2. Project Milestones and Subtasks

1. Game Component Proofs of Concept

a. Hexagonal Game Grid

- Develop frontend logic for using a hexagonal grid as opposed to squares

b. Drag and Drop Asset Movement

- Develop frontend logic for clicking on an object, and dragging it around

the screen, then dropping it in another grid

c. Mouse Hover Pop-Up Information Window

- Develop frontend logic for creating a pop-up window that displays game

information to the user when hover the mouse over a tile

d. Zoomable Camera

15

- Develop frontend logic for a camera that can zoom in and out,

allowing for scalable map sizes when developing custom maps

e. Coordinate Pairs API

- Develop backend logic for receiving and storing grid location coordinate

pairs from frontend

- Develop backend logic for sending stored grid location coordinate pairs to

frontend

f. Match Making API

- Develop backend logic for creating game lobbies

- Develop backend logic for connecting two users to the same specified

lobby

2. User-to-User Communication

a. GameMaker HTTP Requests

- Develop frontend logic for making HTTP requests to interface with the

backend

b. Database Implementation

- Implement a database for the backend to store and retrieve game data

3. Core Game Logic (Turns, Movement, Combat, Win Conditions)

a. Asset Movement (Planes)

- Implement framework for moving game assets (namely planes) around

the game board, updated locations should be sent to the backend for

storage and update on the opponent's board

b. User Turn Iterations

- Implement framework for guiding the user through all decisions and

possible actions to be made on a turn, and then execute the actions and

save data to the backend

c. Combat Losses Calculations

16

- Implement framework for calculating the losses after combat (in

accordance with the rules supplied by our client)

d. Win Condition Determination

- Implement framework for determining the winner of a game (in

accordance with the rules supplied by our client)

e. Match Making API

- Implement framework for users generating lobbies

- Implement framework for users inputting and connecting to specific

lobbies

f. Session Variable API

- Implement framework for sending and receiving game variables (board

states)

4. Game Assets (Art, Effects, Points, Purchasing)

a. Resource Art Assets

- Create and upload sprite art assets for planes, armaments, and other

game assets

b. Custom Asset Game Effects

- Implement framework and logic for the custom game affects of assets (in

accordance with the rules supplied by our client)

c. In-Game Point Calculation

- Implement framework and logic for calculating points scored through

gameplay (in accordance with the rules supplied by our client)

d. In-Game Asset Purchasing

- Implement framework and logic for purchasing advanced in-game

resources and assets (in accordance with the rules supplied by our client)

5. Web-Based Application Deployment

a. Host Frontend as Web Application through GameMaker Studio

17

- Configure our GameMaker frontend application to be hosted as a

web-based application using the GameMaker Studio provided hosting

services

b. Host Backend as Remote Server on Raspberry Pi

- Configure a Raspberry Pi to operate as a server, running our backend code

and our database

6. Play Testing (with Cadets)

a. Performance Assessment (Finding and Fixing Bugs)

- Be more intensely involved in early user testing to find and fix bugs that

appear once the game is released to a wider user-base

b. User Interface Assessment (Usability)

- Later in testing, provide opportunity to receive feedback from cadets

about the user interfaces and usability of the simulator

c. Game Rule Clarity Assessment (Usability / Learnability)

- Later in testing, provide opportunity to receive feedback from cadets

about the game rule clarity; How easy is it to learn to play the game?

7. User Privileges (Asset Modification, Discretionary Points)

a. Game Asset Modifications

- Implement framework to allow privileged users to modify the various

values associated with the game assets (planes, armaments, etc.) as

needed

b. Discretionary Point Distribution

- Implement framework to allow privileged users to distribute discretionary

points as desired to cadets (used for purchasing advanced assets within

the game)

8. Custom Map Creation

a. Background Map Uploading

18

- Implement framework for uploading a map image to the simulator,

allowing privileged users to create custom maps

b. Grid Tile Type Assignments

- Implement framework for assigning the various tile types (as described

by the rules provided by our client) to locations on the uploaded map

c. Grid Scaling

- Implement framework for scaling the hexagonal grid to fit the custom

uploading maps

d. Map Selection

- Implement framework for allowing users to select which map they will

play on

19

3.4. Project Timeline / Schedule

Figure 3 - Spring and Fall 2024 Milestone Gantt Charts

20

3.5. Risks and Risk Management / Mitigation

Note: All tasks listed below are described further in section 3.4.

1. Game Component Proof of Concepts

a. Risk of underestimating the complexity of certain game components, creating

delays in implementation.

- Risk factor: 0.4 (medium)

b. Merging separate proofs of concepts into one common codebase may require

significant overhead and reworking.

- Risk factor: 0.3 (low)

2. User-to-User Communication

a. Performance issues if the communication between frontend and backend

systems is not optimized for scalability.

- Risk factor: 0.5 (medium)

b. Difficulty in keeping track of game states between users, leading to

inconsistencies or opportunities for cheats.

- Risk factor: 0.5 (medium)

3. Core Game Logic

a. Balancing game difficulty and fairness will require a lot of testing as a large

number of game scenarios are possible.

- Risk factor: 0.3 (low)

b. Complexity in the implementation of game mechanics may lead to unintended

functionality and bugs.

- Risk factor: 0.4 (medium)

4. Game Assets

a. Resource Arts may have compatibility issues with Game Maker Studio as asset

resources are derived from a physical board game.

21

- Risk factor: 0.4 (medium)

5. Web Application Development

a. Compatibility issues with different web browsers and devices accessing the

application.

- Risk factor: 0.3 (low)

b. Software Security issues if we do not properly authenticate server traffic and

encrypt/protect user data, databases, and server files/settings.

- Risk factor: 0.5 (medium)

6. Play Testing

a. Cadets may not provide timely and constructive feedback.

- Risk factor: 0.3 (low)

b. Identifying and reworking critical issues discovered by the cadets may require a

lot of backtracking work.

- Risk factor: 0.5 (medium)

7. User Privileges

a. Security risks due to unauthorized access to user privileges or data.

- Risk factor: 0.5 (medium)

b. Potential for abuse if users can modify assets.

- Risk factor: 0.4 (medium)

8. Custom Map Creation

a. Rendering a custom map may require significant computation on the backend,

which may delay games for all users involved.

- Risk factor: 0.3 (low)

b. Allowing users to create their own map may create unintended functionality with

our current tile and movement system/logic.

- Risk factor: 0.3 (low)

22

3.6. Personnel Effort Requirements

TASK
Estimated Work
Time (Hours)

Game Component Proofs of Concept

Develop frontend logic for using a hexagonal grid as opposed to squares 6

Develop frontend logic for clicking on an object, and dragging it around the
screen, then dropping it in another grid 6

Develop frontend logic for creating a pop-up window that displays game
information to the user when hover the mouse over a tile 8

Develop frontend logic for a camera that can zoom in and out, allowing for
scalable map sizes when developing custom maps 6

Develop backend logic for receiving and storing grid location coordinate pairs
from frontend 8

Develop backend logic for sending stored grid location coordinate pairs to
frontend 6

Develop backend logic for creating game lobbies 12

Develop backend logic for connecting two users to the same specified lobby 8

User-to-User Communication

Develop frontend logic for making HTTP requests to interface with the backend 20

Implement a database for the backend to store and retrieve game data 20

Core Game Logic (Turns, Movement, Combat, Win Conditions)

Implement framework for moving game assets (namely planes) around the
game board, updated locations should be sent to the backend for storage and
update on the opponent's board 10

Implement framework for guiding the user through all decisions and possible
actions to be made on a turn, and then execute the actions and save data to the
backend 12

Implement framework for calculating the losses after combat (in accordance
with the rules supplied by our client) 10

Implement framework for determining the winner of a game (in accordance
with the rules supplied by our client) 6

Implement framework for users generating lobbies 10

23

Implement framework for users inputting and connecting to specific lobbies 12

Implement framework for sending and receiving game variables (board states)

Game Assets (Art, Effects, Points, Purchasing)

Create and upload sprite art assets for planes, armaments, and other game
assets 10

Implement framework and logic for the custom game affects of assets (in
accordance with the rules supplied by our client) 10

Implement framework and logic for calculating points scored through gameplay
(in accordance with the rules supplied by our client) 10

Implement framework and logic for purchasing advanced in-game resources
and assets (in accordance with the rules supplied by our client) 10

Web-Based Application Deployment

Configure our GameMaker frontend application to be hosted as a web-based
application using the GameMaker Studio provided hosting services 10

Configure a Raspberry Pi to operate as a server, running our backend code and
our database 20

Play Testing (with Cadets)

Be more intensely involved in early user testing to find and fix bugs that appear
once the game is released to a wider user-base 4

Later in testing, provide opportunity to receive feedback from cadets about the
user interfaces and usability of the simulator 3

Later in testing, provide opportunity to receive feedback from cadets about the
game rule clarity; How easy is it to learn to play the game? 5

User Privileges (Asset Modification, Discretionary Points) 6

Implement framework to allow privileged users to modify the various values
associated with the game assets (planes, armaments, etc.) as needed 8

Implement framework to allow privileged users to distribute discretionary
points as desired to cadets (used for purchasing advanced assets within the
game) 8

Custom Map Creation

Implement framework for uploading a map image to the simulator, allowing
privileged users to create custom maps 12

Implement framework for assigning the various tile types (as described by the
rules provided by our client) to locations on the uploaded map 10

24

Implement framework for scaling the hexagonal grid to fit the custom uploading
maps 8

Implement framework for allowing users to select which map they will play on 8

TOTAL ESTIMATED HOURS: 302

Table 1 - Estimated Personnel Hours

Each task in the above table has an estimated number of hours to complete accompanying it to

the right. The rows that are highlighted denote the 8 major task categories, with each category’s

subtasks below.

3.7. Other Resource Requirements

The deployment of this project requires a computer or virtual machine with an Ubuntu

Linux distribution installed. For now, this project is deployed on an ISU virtual machine created

explicitly for this project. In the future, we plan to host the backend on a Raspberry Pi that will be

in the Armory, so we will need our client to obtain a Raspberry Pi for us to implement that.

Outside of physical resources, we also need personnel. We intend to get a group of

cadets to volunteer to playtest our simulator to help find bugs and other small fixes initially. We

will have our volunteer group continue to play the game over multiple weeks, so they can then

give us feedback in regards to the user experience. Our game needs to quickly and easily convey

the rules of the game, so our testing group will be tasked with analyzing the ability of our project

to do so. They will also provide us with any additional feedback they see necessary in regards to

the ability of our software to effectively teach the ACE strategy.

25

4. Design

4.1. Design Context

4.1.1. Broader Context

Our design is made to the standards of the AFROTC customer. This includes cadets and

other personnel.

Area Description Examples

Public health,
safety, and
welfare

Our design increases the ability of
AFROTC to conduct wargaming
exercises to practice their
understanding of strategic
situations and expands their
capability to keep others safe.

By making wargaming easier to
access, our design increases
AFROTC readiness.

Global,
cultural, and
social

How well does your project reflect
the values, practices, and aims of
the cultural groups it affects?
Groups may include but are not
limited to specific communities,
nations, professions, workplaces,
and ethnic cultures.

Our game focuses on teaching
the ACE combat strategy and
aims to reflect the values of
the Air Force and influence a
culture that emphasizes ACE.

Environmental

A large part of our software deals
with refueling aircraft. Efficient fuel
use is a large part of whether or not
a player will succeed.

Refueling aircraft need to be
placed to maximize the
efficiency and coverage of a
player’s fighter aircraft.
Additionally, our plans are to
host our free software on a
single Raspberry Pi, and this
will negligibly affect our
environment.

Economic

What economic impact might your
project have? This can include the
financial viability of your product
within your team or company, cost
to consumers, or broader economic
effects on communities, markets,
nations, and other groups.

Product needs to remain
affordable for target users,
product creates or diminishes
opportunities for economic
advancement, high
development cost creates risk
for organization

Table 2 - Broader Context Analysis

26

4.1.2. Prior Work / Solutions

This project is new to Senior Design and has not been previously attempted by another

student team. As a result, review of literature related to our task and tools is important. Since

our goal is to translate an existing board game into a digital format and make improvements on

it, the rulebook [1] is key to our success. We spent significant time this semester reading the

rulebook and playing truncated practice games to make sure we have a full understanding of the

existing game and what our customer wants us to replicate. In addition to the rules for the

game, we also read a lot of literature on our primary development tool, that being Game Maker

Studio 2. The GameMaker Manual website was very helpful in getting the team acquainted with

the software [2]. The last major document for us to review is related to the competitive

advantage of our project. While many pieces of wargaming software exist, none of the publicly

available softwares are designed to teach ACE, or Agile Combat Employment [3]. This concept is

mentioned in other locations of our design doc, but it is really the keystone or the ‘why’ for the

existence of our wargame. Teaching AFROTC students to practically employ its tenants is our

customer’s main goal and therefore a primary metric for the team.

As mentioned above, there are many competitors in the digital wargaming market space.

These include franchises we have researched such as Total War, Paradox, and Eugen. While

these pieces of software would be very difficult for us to compete with, we have a significant

advantage over existing software when it comes to our AFROTC customer. Our software is

designed to cover ACE principles, while these other wargames are not designed with this goal in

mind. Additionally, our software is made to work with very low system requirements so that it

can be run on a wide variety of machines instead of just computers with a dedicated graphics

card, for example. Due to these factors, we believe the solution we are developing better serves

the needs of ISU AFROTC than existing wargaming solutions do.

4.1.3. Technical Complexity

The following evidence seeks to justify that our project is of significant technical

complexity:

1. Subsystems

a. Hex Map and Coordinates System

27

- The project includes a hex map with hex coordinates This subsystem

involves intermediate principles of geometry, axial coordinate systems,

and data structures to adjust and display the map data efficiently.

b. Sprite Movement

- Implementing sprites that can be moved around the map involves

animation, user movement constraints, and sending all movements via

HTTP requests to the backend system.

c. User Authentication and Server Communication

- Our project incorporates a server-client architecture with user

authentication features. This subsystem encompasses network

protocols, encryption and Hashing algorithms, and database

management principles.

d. Core Game Logic

- Implementing core game logic based on the rule book of the physical

board game is complex. This subsystem will likely involve algorithms for

game mechanics, decision-making processes, and player constraints.

2. Scientific, Mathematical, or Engineering Principles

a. Geometry

- Principles of geometry are utilized in showing and adjusting the hex map

and coordinates system, and performing game calculations based on a

hexagonal coordinate system.

b. Data Structures

- Various data structures, such as lists, maps, and GML structs, are used to

efficiently store and adjust game-related information, such as map tiles,

sprites, and user attributes.

c. Networking

28

- Understanding network protocols, latencies, and security principles is

necessary for implementing server-client communication and user

authentication.

d. Game Design Principles

- Incorporating game design principles such as balance, strategy, and

usability requires an understanding of human-computer interaction and

user experience design.

3. Challenging Requirements

a. Implementing User Authentication

- Integrating secure user authentication and game creation between

players requires adherence to industry standards for encryption,

password hashing, and secure communication protocols to ensure data

confidentiality and user privacy. We currently use SHA256 Hashing for

authentication, a cryptographically secure industry standard.

b. Core Game Logic Implementation

- Translating the rules and mechanics of a physical board game into a

digital format while maintaining gameplay balance, usability, and

complexity poses significant challenges in design and implementation.

We also need the game to be realistic in order to best teach ACE to ROTC

Cadets.

4.2. Design Exploration

4.2.1. Design Decisions

Backend Portability for Various Hosting Scenarios

Currently, the backend server for our project is being hosted on a virtual machine

provided by Iowa State. We chose to use this method of hosting for development because it is a

29

system we are familiar with and was the lowest barrier to entry option we had, meaning we

could focus more on logic instead of framework.

Moving forward, however, we intend to host our backend server on a Raspberry Pi that

will be stored in the Armory. This is because the virtual machine provided to us by Iowa State is

much more computing power than we need to run our project, and eliminates the possibility of

Iowa State shutting down the server after our team has graduated.

Despite hosting on a Raspberry Pi being a sound enough solution for our project

implementation, an objective of our development is to make the backend as portable as

possible to allow the AFROTC to change server hosting as desired. This could be requesting

permanent VM space through Iowa State to host the server similar to how we are hosting it now,

or renting server space through some other party. This could reduce the potential of the physical

server (Raspberry Pi) being unplugged or disrupted in some other way due to

miscommunication or lack of security and physical organization.

Descriptive and Intuitive User Interface to Simplify Game Rules

At a high level, our project is simply converting a war strategy board game used by the

AFROTC into a web-based equivalent. With this, we very well could have taken the approach of

simply digitizing the game assets. Meaning we replicate the board, game pieces, add

functionality for dragging those assets around, and leave our contributions at that. This would

resolve the issue of limited resources and having to acquire physical game pieces to play the

game and learn about the ACE strategy.

To manage the issue of rule complication and reduce the amount of time spent learning

the game, allowing the users to focus on learning outcomes instead of game rules, we decided

to implement useful interfacing concepts to make the game much easier to learn and play,

allowing cadets to focus on strategy. Some of these concepts include displaying possible move

locations for game pieces and preventing players from making any illegal moves.

Other concepts include displaying more information to users about the game assets

they have available to them and handling all of the combat calculations and losses for the users.

In our experience with the physical board game, we found these to be the most prohibitive

aspects of the game to the learning experience. Those aspects are also the most time

30

consuming, as keeping track of moves and submitting them for calculation takes a long time

with the current board game, and our digital version of the game will be able to handle those

calculations much more easily.

Determining Whether to Use HTTP or HTTPS for Server Calls

Our team was faced with the decision of whether to use HTTP or HTTPS requests for our

backend. We have started our development with HTTP because it is the framework our team

was most familiar with, as well as it is easier to implement for us to get started with testing

concepts and getting a base framework in place. However, we have reached the point of user

account creation and managing usernames and passwords for our users. This led our team to

have a discussion on how we wanted to manage security.

The initial thought our team had in regard to security was to hash the usernames and

passwords. This then led to a discussion as to what hashing algorithm we should use, or if we

should develop our own algorithm. We decided for the moment that we will use one of the

provided hashing algorithms in Game Maker Studio, as it provides a level of security without

taking too much implementation time.

Moving forward, we plan to do one of three things: implement our own custom hashing

algorithm, update the backend to use HTTPS protocols, or do both of the prior two options.

4.2.2. Ideation

An example of a design decision our team was faced with was the gameboard grid for

our game. The Lotus Blossom diagram below (Figure 4) displays some of the possible solutions

we considered, as well as some pros and cons around those solutions to help make our

decision. In the diagram, the light gray boxes are pros and the dark gray boxes are cons. The five

possible solutions we came up with were a square-tiled grid, a square-tiled grid that has the

ability to be scaled up or down, a hexagonal-tiled grid, a hexagonal-tiled grid that has the ability

to be scaled up or down, and a hexagonal-tiled grid with a camera that can be zoomed in or out.

31

Figure 4 - Gameboard Design Lotus Blossom

4.2.3. Decision-Making and Trade-Off

We found with each of the square-tiled options, the shape would be easy to work with for

visuals and most other logic, but diagonal movement would be difficult to manage. The

hexagonal-tiled options would all involve more logic, but would yield a better gameplay

experience with ability to move diagonally effectively. With this, we decided we would be using a

hexagonal-tiled grid, as it is also more true to the original grid used for the board game we are

recreating.

We then found that all of the non-scalable grid options would limit the ability to create

custom maps, which is functionality that our client has expressed interest in being able to do.

32

On the contrary, we found that all of the scalable grid options would be difficult to implement

logically, particularly with the visuals and scaling the assets. With this, we developed a third

scaling solution which is creating a camera that can zoom in or out. This would allow us to

restrict the visible board area and programmatically disable the tiles that are out of view,

allowing us to effectively scale the board without changing any asset sizes.

With all of the findings from analyzing our Lotus Blossom diagram, we determined the

best shape to use for our grid would be hexagonal tiles and the best scaling option would be to

use a zoomable camera object. Thus, we have decided to use the hexagonal-tile with zoomable

camera grid option from the Lotus Blossom diagram (seen at the bottom of the diagram above).

4.3. Proposed Design

4.3.1. Overview

Figure 5 - Wargaming Simulator Architectural Layer Diagram

The system we are developing is an Air Force Wargaming Simulator where players, or

users, are able to log into the game and play a simulated wargame, or battle, between another

logged-in player. This is done via one player requesting the creation of a game through a menu

and then sending the requested code to another player they want to battle. Then, the system will

allow the users to submit their game moves on a hex tile game board. Each game lasts roughly

10 turns, and winners are decided on predetermined winning conditions, such as holding certain

33

tiles at the end of the game or destroying all enemy units. All in all, the purpose of this game

is to teach the ACE combat strategy to Air Force ROTC Cadets in accordance with USAF

requirements.

4.3.2. Detailed Design and Visuals

Figure 6 - Game Logic Flowchart

34

Our design for the Wargaming Simulator’s visuals includes both Front and backend

visuals. For our frontend visuals, we have 2 notable layers: the Presentation layer, or what the

user sees, and the Persistence layer, which handles communication from the frontend to the

backend.

Our presentation layer has 3 main core features vital to the project’s design. One is the

hex grid, which is how sprites move around the map via the user’s control. This control is limited

via the sprite’s stats. We also have Resource Lists, which is the pool of sprites the user will be

able to control, select, and otherwise view and manage. Then we have Menus, which are the

GUIs that allow the users to connect with each other and the database and battle each other.

Our persistence layer has account creation, which allows the user to save and query

account information. We also have the Matchmaking requests module, which connects our

users to other users via the creation of game sessions. We also have the session update

handler, which handles the session updates between two users.

Figure 7 - Frontend Architectural Layers

35

Next, we have the backend design, as seen below, which is a model, view, and

controller architecture. The models, Gamefile and Account, represent all data of the users and

sessions that the users have. The Views represent the ability of the system to not only create

game sessions but also find games, reset games, and serve as helper functions and features to

the system. The Controllers handle session updates and other similar day-to-day or turn-to-turn

functionality.

Figure 8 - Backend Layers Diagram

4.3.3. Functionality

An AFROTC cadet will be able to connect to the web-hosted game via any device that

supports the minimum screen size for the game (i.e., a desktop, laptop, or tablet). A player will

be able to send HTTP requests via button presses and other user input while playing the game.

These HTTP requests will be sent to the backend server, currently hosted on a VM on the

University’s campus. This server will parse JSON data sent from the front-end and then, if

required, send a request to a database containing information about users, game sessions, and

36

other game data. The Java server will then send the requested information to the front-end

Game Maker system to display, where the cycle may repeat.

4.3.4. Areas of Concern and Development

The current proposed solution satisfies the requirements and user needs effectively, as it

effectively displays the ACE strategy (the original board game did as well), and has increased

usability by guiding the user through viable moves and calculations through higher quality

interfaces and automatic combat calculation (the original board game lacked in these areas).

Our primary concern is whether or not our application will be extensible enough for our

client to make necessary gameplay changes without the need to rework code. Our game

includes many different asset cards, each representing troops, armaments, or planes used by

the military. Each of the representations of actual resources has been assigned variables and

characteristics within the game to reflect the nature of the real resource.

For example, all planes have assigned movement speeds. If in the future, F-15 are

innovated to fly faster than the currently do and the AFROTC would like to reflect that change

within our game, our goal is for AFROTC leadership to be able to modify the movement speed

value for the F-15 through an interface available within our web application, not by having to

access the database manually.

We are currently unsure of how much of a priority that level of accessibility is to our

client. A question we intend to discuss with our client is how important that accessibility is, as it

will change where we choose to allocate our attention and what functionality we put the most

development time into

4.4. Technology Considerations

We are making use of proven and reliable software tools to build our design. As

mentioned above, these tools fulfill the purpose of our 2 major modules; the client-side GUI and

the server-side, which stores gameplay data and allows for multiplayer functionality.

On our front end, we are using a 2D game development engine called Game Maker

Studio 2. This is a very powerful piece of software that gives us tools to quickly create 2D

graphics and game pieces that a user can move around. This tool is also very popular in the

37

game development space, which means that there is a wealth of documentation and

tutorials available to teach us how to work with its unique systems. While GM Studio 2 is

very powerful, it does have some drawbacks. First of all, it uses a special programming

language called GML (Game Maker Language). While it is similar in structure to Java, the syntax

and built-in functions are very different. GM Studio 2 also makes use of unique block-based

programming conventions for creating objects and graphics. This means that we had to do a lot

of learning about GM Studio exclusively, which is difficult to transfer to other programs. Despite

this significant weakness, the power provided by the engine is worth the trade-off. This is mostly

due to the ease with which we can create graphical assets, cameras, and all of the other

necessary aspects of the GUI.

Alternatives for the front end include just using Java features in an IDE like Eclipse or

using a separate game engine like Unity. We have discussed both of these alternatives, but they

have far more weaknesses than GM Studio when applied to our project. Using straight Java

deprives us of many of the graphics tools that make 2D game development in GM studio much

easier. From the perspective of using Unity, it provides us with many necessary tools for game

development such as a physics engine and graphical tools for things like shadows and light

sources as well as textures. However, all of these systems are optimized for a 3 dimensional

perspective, and many workarounds are necessary for clean 2D functionality. Because of this

analysis, we believe that GM Studio 2 is the best tool for us to use on the front end.

4.5. Design Analysis

So far, we have built a basic Game Maker application that includes a hex map with hex

coordinates, and sprites that are able to be moved around the map. Our game also implements

a camera that will follow the user’s mouse to adapt to different screen sizes of the game’s

players. We also have a start menu in which a user is able to send a log in request to our server.

We have set up a Ubuntu Red Hat Linux 2204 server in which a spring-boot application is

currently serving our first set of HTTP requests. The server is also connected to a Maria

database, which is also successfully setup. All of the coded implementation is currently on our

team’s Gitlab.

Our plans for future design and implementation are shown as follows, also mentioned in

previous sections of this Design Document: fully implement User-to-User Communication,

38

implement Core Game Logic from the rule book of the physical board game, import and

develop functionality for game assets, package and deploy the Web-Application, introduce

play testing with AFROTC Cadets, implement and enable User Privileges and Admin Privileges

respectively, and allow the user to create custom maps.

The current work done so far significantly implies the overall project's feasibility. The full

implementation of the project is a function of time. The game’s logic and player constraints

complexity are the main factors in increasing the time for implementation.

39

5. Testing

5.1. Unit Testing

The vast majority of our unit testing occurs on the backend of our project. We have many

API calls that we have created for various functions. A list of those calls includes:

- POST /game/create

- PUT /game/join

- PUT /game/update

- GET /game/retrieve

- DELETE /game/delete_game

- POST /account/create

- GET /account/login

To test each of these requests before connecting them to the frontend of our project, we have

used Postman to ensure that the calls work and the bodies / headers are formatted properly. We

have a shared Postman workspace that we use for storing our requests to test the backend

server. We also have a mock server on Postman that can be used to store responses from the

backend and test the frontend requests using those stored responses by making calls to the

mock server.

5.2. Interface Testing

Our frontend is developed in GameMaker Studio using their proprietary GameMaker

Language (GML). Our team hasn’t implemented any frontend testing tools that are compatible

with GML at the moment, and have performed all of the interface testing manually so far. This

includes dragging assets and ensuring intended behavior. For frontend-to-backend testing, all of

our implementation up until this point has been based on buttons, so that functionality has also

been tested manually by pressing the buttons and ensuring intended behavior.

40

5.3. Integration Testing

The primary integration path in our project is connecting the GameMaker frontend with

the Spring Boot backend (hosted on an Iowa State provided virtual machine). Much of this

testing is also being performed manually at the moment. To ensure account creation and login

is functional, we launch the app and create a new account, and sign in. To ensure game assets

are being saved to the server properly, we launch the app, move the assets from their original

location, and submit them to the server. To ensure game asset coordinates are being served

properly from the server, we run the app, move the assets, and update the board from the server.

5.4. System Testing

Our system testing will look very similar to our integration testing. Given our project is a

video game, play testing makes the most sense. With a video game, user experience and game

flow is just as important as making sure logic behaves as expected. This means that it is

important that there be human interaction with the application during testing, as automated

testing can’t analyze user experience like a human could.

5.5. Regression Testing

Our team has opted to develop in such a way that we lay the framework for the entire

project before moving forward in detailed development for any specific component of the game.

With this, our additions inherently build upon previous functionality. This makes regression

testing easy, as we are naturally performing regression testing as we perform integration and

system testing, as new functionality would fail if old functionality fails. As long as our

integration and system testing continue to yield successful tests and expected behavior, we can

be confident that our previous implementations remain functional.

5.6. Acceptance Testing

To ensure our project meets the non-functional requirements in addition to the functional

requirements, our team plans to gather a group of AFROTC cadets to volunteer as play testers

mid-to-late next semester. As mentioned in system testing, human interaction in testing a game

is valuable in many ways that automated testing can’t be. With this, we wanted to make sure our

41

intended users were given a chance to use our software and provide us with feedback during

the development cycle.

5.7. Results

The primary result of our testing depends on feedback from AFROTC cadets regarding

their experience with the game, its user interface, and overall ease of gameplay. The

requirements given to use from our client are very non-technical. The primary objective is to

effectively familiarize cadets with ACE strategy. This means reducing rule complication to direct

more of the learning to strategy versus game technicalities. To know if we are meeting that

objective, our team determined it is best to directly contact the users about their experiences.

Our team has concluded that a qualitative objective requires a qualitative measurement, and the

most qualified individuals to make that qualitative measurement are our intended users.

42

6. Implementation
Our first demo featuring all core features implemented will be conducted at the end of

this semester. This will be a scaled-down demo of the gameplay using 1 aircraft on each side of

the game. Its primary purpose is to demonstrate that all of our game systems can work together

and to test the implementation of our multiplayer backend. This demo coincides with the

completion of core gameplay features.

Next semester we plan to segment our implementation goals into 2 week sprints as we

have done for this semester. Our goal is to increase complexity from our preliminary demo that

will occur by the end of semester 1. Essentially, we will be building on the existing structure. The

following is an ordered list of tasks to complete. Each will be given a 2 week sprint to complete

starting week 1 of classes.

1. Stress test game save capability

2. Add additional assets to each side

3. Economy development to allow purchase and deployment of advanced assets

4. Add mission objectives and tracking to determine alternate win conditions

5. Expand map and objective customization options

Each of these tasks makes use of the skeleton we have made in the first semester. This

implementation plan makes allowances if we need more time to finish a particular goal and also

leaves us at least a month for testing the gameplay and server calls. We know that testing is

very important to the success of our project since so much of it is to improve the user

experience. We believe that this time padding gives us the ability to deliver a robust final

product.

43

7. Professional Responsibility
Note: This discussion is with respect to the paper titled “Contextualizing Professionalism in

Capstone Projects Using the IDEALS Professional Responsibility Assessment”, International

Journal of Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1. Areas of Responsibility

Area of
Responsibility

IEEE Description NSPE Differences

​​​​Work Competence Both emphasize the
importance of work
competence and understanding
in regards to technology.

The NSPE Code of Ethics applies to
the engineering world as a whole,
including many different areas of
engineering work

Financial
Responsibility

The IEEE emphasizes honesty
and realism in all professional
dealings, including financial
matters.

While the NSPE Code of Ethics
highlights the importance of
technology advancements, it
focuses more on broader
engineering principles.

Communication
Honesty

Both emphasize the
importance of truthfulness and
objectiveness in
communications with others,
especially customers.

Highlights honest communication
in all professional interactions,
while IEEE emphasizes public
transparency.

Health, Safety, and
Well-
being

Both emphasize the
importance of prioritizing
safety, health, and welfare.

NSPE prioritizes public safety,
health, and welfare in all
engineering practices, while IEEE
emphasizes innovative public
welfare concerns.

Property
Ownership

While the IEEE focuses on
fairness and
non-discrimination, it also
highlights the importance of
respecting other individuals.

NSPE requires engineers to
safeguard confidential information,
while IEEE emphasizes ‘respect’ for
intellectual rights.

44

Sustainability Both emphasize the
importance of environmental
sustainability. The IEEE Code
encourages realism in handling
environmental issues.

The NSPE promotes sustainable
engineering practices while the IEE
code relies upon innovation to get
things done sustainably.

Social
Responsibility

Both emphasize the
importance of avoiding harm to
others. The IEEE principle
states how important it is to
conduct yourself honorably.

NSPE emphasizes honorable and
ethical conduct in all domains while
IEEE focuses on mainly Electrical
and hardware responsibilities.

Table 3 - Areas of Responsibility

7.2. Project Specific Professional Responsibility Areas

1. Work Competence

- Applies

- Current Performance: High

- Designing a war gaming simulator for Air Force ROTC is complicated, and it's

important that team members have the necessary competence in software

development, game design, and requirements engineering to complete the task.

2. Financial Responsibility

- Applies

- Current Performance: Medium

- While our wargaming simulator may not involve financial transactions, there are

still financial responsibilities related to the deployment of our project. We want

the project to be free and able to run on minimal hardware in ISU.

3. Communication Honesty

- Applies

- Current Performance: High

45

- Clear and honest communication is essential for conveying project progress,

challenges, and requirements to ISU AFROTC. Reporting work truthfully creates

trust and helps collaboration among all people involved.

4. Property Ownership

- Applies

- Current Performance: High

- We must respect the intellectual property, ideas, and information of clients and

the United States Air Force. This includes getting permissions for third-party

assets and in-game sprites, respecting intellectual property rights, safeguarding

confidential information related to the project, and encrypting the data of our

users.

5. Sustainability

- Partially Applies

- Current Performance: Medium

- Our project may not have direct environmental impacts, but minimizing energy

consumption in software development processes or considering the

sustainability and environmental impact of hardware needed for the game is a

good idea.

6. Social Responsibility

- Applies

- Current Performance: Medium

- By teaching future generations of USAF Officers on how to better implement the

ACE combat strategy, we directly contribute to the benefit of society and garner a

community of Cadets around the Wargaming simulator while the Cadets use the

Software.

46

7.3. Most Applicable Professional Responsibility Area

The most applicable area of responsibility in the context of our Wargaming Simulator is

arguably Work Competence. This is because the success of our project relies on the

competence and expertise of the four of us developing the project. Additionally, developing a

software application, especially one with complex functionalities like a war gaming simulator,

requires a high level of technical expertise in software development, and Domain knowledge. We

as a team also need to ensure the quality of our project, since the reliability of our game is vital

to the success of Air Force ROTC.

47

8. Closing Material

8.1. Discussion

While our team can’t make any claims as to the results of our testing, as it hasn’t been

completed, we are confident in the effectiveness of our proposed solution. At the core of our

client’s problem is an ineffective means to properly educate cadets on an essential concept

within the United States Air Force for combat engagement. What our client needs is a solution

that will more efficiently and more effectively familiarize cadets with ACE strategy than the

board game that is currently used. Our user interfaces will guide players through all decision

making processes, perform the necessary calculations for them, store all game moves for them,

and has minimal setup compared to a board game. The capability to perform calculations, store

game moves, and minimal setup time all tackle the efficiency requirement of our client’s

problem. The user interfaces to guide players through all decision making processes tackle the

effectiveness requirement of our client’s problem, as less rules needing to be learned means

more attention to be directed at learning strategy.

8.2. Conclusion

As of Spring 2024, our team has implemented all of the framework for the frontend and

backend applications. Our project currently has the functionality to create and manage user

accounts, as well as create and manage games. We also have core functionality for 2 players to

engage in combat. With this, our team is in the position to focus on implementing the full rules

of the game next semester, which primarily looks like sending flags and data to the backend and

adding the framework to display animations and manage game logic from the backend. More

simply put, we have created the game pieces this semester, and next semester we will be

adding the rules.

8.3. References

[1] ISU AFROTC, Global War 2030 AFROTC Educational Wargame Rules. Ames, IA: Iowa State

University, Feb 2024.

48

[2] ISU AFROTC, AFROTCI 36-2011 Vol 3 (Cadet Operations). Ames, IA: Iowa State University,

Jun 2023.

[3] ISU AFROTC, AFROTCI 36-2011 Vol 1 (Excerpt Objective 10). Ames, IA: Iowa State University,

Feb 2024.

[4] ISU AFROTC, AFDN 1-21 ACE. Ames, IA: Iowa State University, Aug 2022.

[5] GameMaker Manual, https://manual.gamemaker.io/ (accessed Apr 20, 2024).

[6] U. A. Force, “Quick links,” U.S. Air Force Doctrine > Home, https://www.doctrine.af.mil/

(accessed Apr 20, 2024).

49

9. Team

9.1. Team Members

● Reid Coates

● Jack Kelley

● Alexander Hassan

● Luke Muilenburg

9.2. Required Skills for the Project

● Experience with GameMaker Studio

● Experience with Java Spring Boot

● Experience working with Iowa State virtual machines

● Experience creating HTTP requests and custom API calls

● Experience with video game user interfaces

● Experience with strategy games

9.3. Skills Covered by the Team

● Reid Coates

○ Experience with GameMaker Studio

○ Experience with Java Spring Boot

○ Experience working with Iowa State virtual machines

○ Experience creating HTTP requests and custom API calls

○ Experience with video game user interfaces

○ Experience with strategy games

● Jack Kelley

○ Experience with GameMaker Studio

○ Experience working with Iowa State virtual machines

○ Experience creating HTTP requests and custom API calls

○ Experience with video game user interfaces

○ Experience with strategy games

● Alexander Hassan

50

○ Experience with Java Spring Boot

○ Experience working with Iowa State virtual machines

○ Experience creating HTTP requests and custom API calls

○ Experience with video game user interfaces

○ Experience with strategy games

● Luke Muilenburg

○ Experience with Java Spring Boot

○ Experience working with Iowa State virtual machines

○ Experience creating HTTP requests and custom API calls

○ Experience with video game user interfaces

○ Experience with strategy games

9.4. Project Management Style Adopted by the Team

Note: The following is directly quoted from Section 3.1 of this document.

Our team is adopting a blend of waterfall and agile development. This includes Weekly

SCRUM Sprints, Monday team meetings, Thursday check-in/advisor meetings, and Flowchart

tasks with color codes for sprints. This is because our project requirements are largely not fixed,

and thus, our team must be able to adapt to ever-changing requirements. We have planned

multiple sprints out from week one, so we did not adopt a pure agile management style, but we

still have standups and client-involvement, thus, a blend of management styles was achieved.

Our Team tracks progress via GitLab and Sprint plans provided in section 3.2.

9.5. Initial Project Management Roles

● Reid Coates - Client Coordination and Backend Development Lead

● Jack Kelley - Organization Lead and Frontend Development

● Alexander Hassan - Testing Lead and Frontend Development

● Luke Muilenburg - Frontend Development Lead

9.6. Team Contract

Note: The following is copied directly from our original team contract, retaining the original

styling and formatting.

51

Team Members:
1) Reid Coates
2) Jack Kelley
3) Alexander Hassan
4) Luke Muilenburg

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

Day: Monday
Time: 1pm-2pm
Location: MASC (5th floor Memorial Union)

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face):

Our preferred method of communication within the team (Reid, Jack, Alex, and
Luke) is our private Discord server. This will allow us to communicate to the entire group
simultaneously, as well as keep a log of all conversations and decisions that were made.

Our preferred method of communication with our advisor and client will be email.
Reid will be our client and advisor contact point, making it easier for our team to keep
track of what messages have been relayed to both our advisor and client (no duplicate
communications), as well as make it easier for both our advisor and client to contact us.
Instead of managing multiple conversations, our advisor and client will know specifically
who to contact.

3. Decision-making policy (e.g., consensus, majority vote):

All decisions will first be made by consensus, with the opposing views presenting
their cases until a final plan is agreed upon. If an agreement cannot be made within our
allotted meeting time, the decision will go to a majority vote. Given that we have 4
members, a split decision will be resolved by consulting our advisor or another mentor.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

Our meeting minutes will be tracked and recorded in a document that is in our
shared Google Drive. Luke will be responsible for tracking and recording the minutes for
our weekly meetings, as well as documenting any major decisions or plans developed
during that week.

52

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

Each team member is expected to be present, on time, and an active participant
for all meetings.

Team members are expected to communicate any absences, conflicts, or tardiness
via the team Discord prior to the scheduled meeting time, giving teammates ample notice
of said absence, conflict, or tardiness.

Team members are expected to actively participate during meetings: Providing
feedback during discussions, updating teams on progress of assigned tasks, and asking
questions or for help when necessary.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Each team member is expected to fulfill their assigned tasks on-time, with full
effort and quality.

If at any point an extension is needed or a timeline won’t be met, the teammate in
question should communicate the need for an extension with the group as soon as
possible.

Team members should ask for assistance whenever needed to avoid missing
deadlines and disrupting the development process for the other members of the group.

3. Expected level of communication with other team members:

At a minimum, each team member should provide the group with a weekly report
of progress made, problems encountered, and an updated timeline on the completion of
the tasks assigned to that team member.

As mentioned previously, any problems or areas where a team member is in need
of help should be communicated to the group as soon as possible to provide significant
time to develop a plan for resolving the problem or readjusting the direction of the
project if necessary.

4. Expected level of commitment to team decisions and tasks:

Team members are expected to fully commit to final decisions made by the team.
Unless otherwise communicated or resolved, tasks are to be devised and assigned as a
team and are to be completed as agreed upon by the group.

Team members are also expected to completed their tasks within the agreed upon
amount of time, unless otherwise communicated and extended, and complete those tasks
to the best of their ability. If a team member feels ill-equipped to successfully complete a
task assigned to them, that team member should seek help from the group, and potentially
reassign the task to a more suitable team member.

53

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

Reid: Client interaction, Back-end design
Jack: SCRUM master, Front-end design
Luke: Team organization, Front-end design
Alex: Testing, Back-end design

2. Strategies for supporting and guiding the work of all team members:

Meeting notes will be taken, and any commitments will be followed.
At the beginning of each meeting, we will provide scrum statuses to each other and make
sure any obstacles are being addressed.

3. Strategies for recognizing the contributions of all team members:

Our team Trello board will keep track of what tasks are currently being worked
on, as well as what tasks have been completed. We can use this and the team member who
was assigned to a given task to determine where the other members are in the
development process and what all they have contributed to the project.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.

Jack: Frontend development in Android Studio, game asset creation, Software
Engineering internship and class experience with networking protocols and CRUD
requests. Personal Java game development and minimal GameMaker Studio experience
for game development. Various leadership roles to aid in organization responsibility and
use of Trello for SCRUM mastering.

Reid: Backend Java development using Springboot, understanding and teaching
experience with Agile Combat Employment concepts, experience with interacting and
operating within US Air Force environments, project management, and also wireframing
and UI experience with user testing and interaction.

Alex: Backend Development in Spring Boot and Maven. Software Engineering
Co-op with experience in Unit testing, traceability of requirements, and C.

54

Luke: Java backend development experience, software & computer
engineering internship experience, familiarity with various wargaming systems, game
development experience with Unity game engine

2. Strategies for encouraging and supporting contributions and ideas from all team
members:

Making our group decisions by consensus ensures all members will have their
ideas heard and give everyone a chance to contribute to the various issues we will face
throughout the development of our project in an open and fair setting. Also, assigning
specific roles for each member ensures that all members feel as though they are making a
significant contribution to the project because everyone has at least one area that they
are solely responsible for.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will
a team member inform the team that the team environment is obstructing their
opportunity or ability to contribute?)

If at any point a team member feels as though they aren’t being permitted to
collaborate or are being excluded from the group, that team member is responsible for
bringing the issue to the group by means of a respectful conversation to be had during
our weekly meeting. If a team member doesn’t feel as though their concerns are being
heard or feel uncomfortable discussing the issue with the group, that team member
should consult the advisor who can mediate conversation between the excluded member
and the rest of the group until the problem is resolved.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
● Thoroughly understand and design a wargaming simulator.
● Understand Agile Combat Employment.
● Understand Air Force Air Assets and their functions.
● Create a plan for the software architecture based on extensibility and usability.
● Work with the Client to create an in-depth wire frame of our application.
● Learn how to effectively program in Game Maker Language (GML).

2. Strategies for planning and assigning individual and team work:
● Our team will use a Trello board as well as Github to visualize tasks that need to

be completed or assigned.
● Our Scrum Master will primarily be responsible for making sure every team

member has an appropriate amount of work and will help each member identify
and solve obstacles.

55

● Any member can request the creation of a task that needs to be completed, and
the team, especially the scrum master will approve/modify and assign the task.

3. Strategies for keeping on task:
● Our meetings will follow a consistent structure to ensure all necessary discussions

had and developments are made
● Meetings will be kept short and to the point, reducing the amount of attention

required

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

Due to the importance of getting off to a good start with our project this first
semester, we need to make sure that all team members are meeting their obligations
outlined in this document. It is reasonable for us to excuse occasional missed meetings
due to extenuating circumstances. If a team member is struggling to meet their
obligations, we will meet as a team to see what we can do to help him.

2. What will your team do if the infractions continue?

If a pattern of missed meetings and incomplete work develops, we plan to bring it
to the attention of our instructors as soon as possible to collaborate to find a solution to
the problem. This is so that we can avoid a backlog of incomplete work that others rely
on developing, which would result in a lot of lost time down the road. If issues with a
teammate develop, we should also be prepared to communicate transparently with the
stakeholders in our project.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.
1) Luke Muilenburg DATE: 1/29/2024
2) Jack Kelley DATE: 1/29/2024
3) Alexander Hassan DATE: 1/29/2024
4) Reid Coates DATE: 1/29/2024

